
Sci.Int.(Lahore),25(3),419-424,2013 ISSN 1013-5316; CODEN; SINTE 8 

 

419 

ORGANIZATIONAL SOFTWARE COST ESTIMATION MODEL  
BASED ON HISTORICAL DATA 

Abdulhameed Alelaiwi 
Department of Software Engineering, College of Computer & Information Sciences, 

KingSaudUniversity, P.O. Box 51178, Riyadh11543, 
Kingdom of Saudi Arabia 

ABSTRACT: Accurate software development estimation continues to be a difficult problem for 
government and industry. Accuracy is determined by measuring the difference between the estimated 
cost and the actual cost. The literature contains abundant documentation of automation projects 
exceeding original costs and schedule estimates. Unexpected budget increases and schedule delays 
reduce sponsor confidence in the original software development estimates and damage the reputation of 
the estimation process. 
In this paper, authors are involved in conceptualizing a model that will overcome some of the 
limitations cited in this paper.  The alternative technique is to develop a model unique to a particular 
environment, which should more accurately reflect that environment. A number of studies suggest that 
local models are more accurate than all-purpose models. Studies have shown that most organizations 
that have built up a considerable database over time, generally have a history of software management, 
and would have a custom model in place as opposed to deploying a generic one.   

Key words: Software Cost Estimation (SCE), Algorithmic Models, LOC, Markov Chain, Data Collection, 

AHP. 

 
1. INTRODUCTION 

To date, most work carried out in the software cost 
estimation field has focused on algorithmic cost modeling. 
In this model, costs are analyzed using mathematical 
formulas linking costs or inputs with metrics to produce an 
estimated output. The formulas used in a formal model arise 
from the analysis of historical data. In general algorithmic 
models estimate project effort using a process where a 

formula is modified according to project characteristics. 
Model accuracy and consistency depend on the ability of the 
size metrics in a database to represent the product, process, 
and environment of prior development projects. Parametric 
models are calibrated for each development environment 
using data from project metric database. 

A key finding of the survey of existing software cost 

estimation models is that most of the models are limited in 

nature.  These limitations emanate from three fundamental 

aspects of the estimation process:   

1-Some models use historical data obtained from specific 

development environment.  Environments do change from 
project to project.  Equations and methods from these 
models of specific environments give wrong estimates for 
differing environments.   

2-Models that estimate the overall cost of a software project 
omit details that play a significant role in providing accurate 
input.  On the other hand, models that estimate costs based 

on predefined phases can be erroneous because the new 
project for which the model is used may have a different set 
of phases. 

3-In general, estimation is accomplished during initial 
phases of a project.  For example, estimates are customarily 
made during the feasibility and requirements phases.  This 
estimation in early stages is less accurate because of 
incomplete information, especially if the project has new 
innovative steps.   

 Literature points out this weakness and declares that most 
cost estimation models perform poorly because “they were 
developed from analysis of available legacy data sets.” 

Literature states that the models do not have the 
mathematical rigor needed to accommodate the lack of 
stationary in the statistics that are being measured, which 
necessitates continually adjusting constants that are used to 
generate the effort size equation to fit every data set.  

Some models rely heavily on delivered code size (LOC) as 
an essential parameter. LOC has been known to be very 

misleading. The validation of such models based on fuzzy 
independent variables is not a precise task, and it is usually 
difficult to arrive at a consensus on the manner in which 
subjective cost drivers ought to be measured.  
1) Generic models have the following limitations: 

2) The size/effort relationship can be inconsistent over 

various environments. 

3) Generic models are calibrated to a specific profile of 

projects and perform best when it is applied to a project of 
that specific profile. 

Generic algorithms can cause inaccurate predictions unless 

calibrated across environments and as conditions change. 

Thus, generic models are not transferable between 

organizations 

The estimates are usually calculated only during the early 

stage of a project.  

Some cost models estimate the overall cost of a project; 

others estimate the effort required in a predefined phases. 

Estimating the overall cost of the projects lacks necessary 

details, while estimating cost in predefined phases forces the 
use of theses phases. 

 Estimation process is usually done once during the early 

stage of the project. 

 An estimators needs practice at developing estimates. 

The models published in the literature are not portable to 
other development environments in their uncelebrated form. 
The models must be calibrated for each development 
environment. There is no formal way in the literature to do 
the calibration.  Uncelebrated models inaccurately compute 
the effort required for tasks because organizations have 



 ISSN 1013-5316; CODEN; SINTE 8 Sci.Int.(Lahore),25(3),419-424,2013 

 

420 

different processes, products, development environment, and 
review requirements. For example Kermer in [1] used a 
single set of projects from an anonymous organization to 
check the accuracy and consistency of four popular models. 
The results indicate that there is a wide variation in the 
results from the models. 

In this paper, authors are involved in devising new models 
that will overcome these limitations or at least they can lift 
some of the limitations. This paper documents the findings 
of the survey with the hope to enable researchers in 
correcting estimation problems in their model development 
effort.      

Conventional cost models are sometimes based on 

parameters that do not truly reflect the real nature of the 
programming effort, as they rely heavily on historical data to 
arrive at estimates. For this reason, it is time-consuming to 
refine the model to suit one’s needs and becomes a matter of 
trial-and-error. 
2. LITERATURE REVIEW 
Estimators always feel a challenge to estimate the cost of 

software, because non-estimation usually results in increased 

budget and schedule. Researchers are working to solve this 

issue and hence some related work is presented below. 

A morphological-rank-linear system was presented by 

Ricardo el at. This system is used to solve the software cost 
estimation problem.MRL is based on the relationship 

between Morphological –rank operator and Finite impulse 

response. This system is a linear combination between MR 

and FIR. For MR training algorithm was used and for MRL 

two metrics were used to solve the issues. To check the 

performance of a proposed MRL model, evaluation function 

method was designed which showed that MRL model is 

more consistent.MRL has both linear and non-linear 

components and is simple in its approaches. This makes it 

more applicable then the other one [2]. 

Nikoloas and Lefteris introduced a virtual tool which is 
Regression Error Characteristics (REC) analysis, another 

method to estimate the software cost. This method involves 

geometrical properties along with simple inspection graphs 

to compare and validate different proposed models.REC 

uses cumulative distribution function for the measurement of 

prediction error. This method provides better management of 

projects as well as helps out to find the effects of errors by 

identifying the types of errors that affects the software cost 

[3]. 

Research has shown that in order to calculate the software 

cost, sometimes parametric models are used instead of 

universal mathematical expression .In this regard, Javier et 
al. presented a segmented model based on fuzzy clusters. In 

fuzzy cluster different mathematical models are used to 

calculate software cost in a particular time for estimation 

purpose [4]. 

Another popular technique for software development cost is 

ESTIMATION BY ANALOGY (EBA).It is a complicated 

process. . Nikolaos et al [3] worked on the possible 

improvement of this method. The technique works on 

bootstrap method. They increased the efficiency of this 

method by investigating aptitude of iterated bagging to 

overcome the estimation error of EBA. They gave a trial to 

this method and found that the system greatly reduced the 

errors and increased the efficiency of EBA [5]. 

Another method to reduce the software development cost 

was proposed by Ricardo et al. He designed morphological-

rank linear (MRL) model. In MRL, a modified genetic 

algorithm (MGA) was used to increase the efficiency of 
software cost estimation. Several experiments were done to 

test this method based on 6 databases of software products 

and the results were compared with machine learning 

models. It is a simple and easy method which contains linear 

and non linear components [6]. 

Another model based on the same issue was proposed by 

Vinay Kumar et al. In this method he used WAVELETE 

NEURAL NETWORK (WNN).The technique used for this 

method was Training Algorithm (TAWNN). WNN used two 

types of transfer function which are Morlet function and 

Gaussain function. Analysis was done and the results 

showed that both WNN and TAWNN were reliable methods 
to estimate the software cost [7]. 

Another technique such as constructive cost model 

(COCOMO) was also used to estimate the software cost. 

The technique is based on three stages. Stage one which is 

the basic level is based on low accuracy   which makes quick 

and rough estimation. Stage two which is the intermediate 

level considers more cost factors. Third level which is the 

detailed level is based on individual project level [8]. Qin 

and Fang discussed three most popular methods that are 

being used for software cost estimation such as Scientists 

determined that the method, Analogy method and parameter 
model method. In Parameter model COCOMO is most 

widely used because of its estimation equations that provide 

flexible and reliable input and output factors for scheduling 

and work load during the project development [9].  

Different data mining techniques were introduced by Zeynab 

and Farhad. To increase the efficiency of software cost 

estimation they tested their technique by NASA’S 

PROJECT.COCOMO succeeded in improving SCE. They 

also proved that artificial intelligence methods are more 

reliable then algorithmic methods. On comparing Support 

Vector Regression (SVR), K-Nearest Neighbors (KNN), 

Linear Regression (LR) and Artificial Neural Network 
(ANN), they found that ANN and SVR are more efficient 

methods [10]. 

 Ricardo et al. proposed another morphological approach 

based on hybrid artificial neuron. This approach consists of 

two factors which are mathematical morphology and 

algebraic foundation both based on complete lattice theory. 

Both methods were tested by DILATION –EROSION 

PERCEPTRON (DEP) and the results indicated the 

efficiency of this process in all regards [11].  

3. THE STOCHASTIC MODEL 
The approach to the development of the stochastic model 
involves a number of activities that need to be performed.  
The generation of the proposed model involves the 
following features/activities: 

 Collection and maintenance of a database of past 

projects. 

 Statistical analysis of the data to derive an appropriate 

model relationship. 



Sci.Int.(Lahore),25(3),419-424,2013 ISSN 1013-5316; CODEN; SINTE 8 

 

421 

  Identification of completed projects with 

properties similar to the current project and their costs 

used as basis for estimating the current projects. 

 Calibration of models using only local data, and 

feedback data as the project progresses. 

 Use of any set of software artifacts desired. 

 Use of any lifecycle models like sequential model, or 

spiral model.  

 Capability to repeat the estimation process as needed 

throughout the duration of a project.  

For estimating cost on a new project, the proposed model 

will use the data of similar projects that were previously 

completed.  The data will include project phases, artifact 

applied, time durations, effort, cost and other key 

information.  The model will use the data on completed 

projects to construct a Markov Chain along with state 

probabilities to estimate cost of the new project. 

4. COLLECTION OF THE PROJECTS DATA  
All well known software estimation models are derived 

using empirical techniques and this paper considers data 

drawn from a specific organization 

It is necessary to have more rigorous approach to data 

collection. The data collection approach should contain 

information of the product and software artifacts used. 

Metrics is quantitative means of recording the history of a 
product. The proposed model assumes an organization has 

useful techniques for gathering and applying metric 

information to cost estimation. The data gathered should be 

in a form useful to the estimator to build and update the 

model. The data should include both product metrics which 

describe the features of the system built, and process metrics 

which describes features of the software artifacts used to 

build the system. It is hard to identify specific processes that 

should be recorded and used by every organization; each 

organization is unique. However, metrics recorded for the 

purpose of improving cot estimation should be able to satisfy 

the following: 

 Actual effort of the system development at any stage of 

the various software artifacts must be recorded. 

 All estimates and re-estimates are recorded. To 

determine the accuracy of estimates, a complete record 

of all estimates must be maintained. 

The characteristics of the completed products include the 

size measured in some suitable units (e.g., Source Line of 

Code, Function Points), a description of the functionality of 

the system, classification of type of software, and any other 

information that characterizes the product. 

The approach to the development of the new model involves 

a number of activities that need to be performed.  The 

generation of the proposed model involves the following 

features/activities: 

 Collection and maintenance of a database of past 

projects. 

 Statistical analysis of the data to derive an appropriate 

model relationship. 

  Identification of completed projects with properties 

similar to the current project and their costs used as 

basis for estimating the current projects. 

 Calibration of models using only local data, and 

feedback data as the project progresses. 

 Use of any set of software artifacts desired. 

 Use of any lifecycle models like sequential model, or 

spiral model.  

 Capability to repeat the estimation process as needed 
throughout the duration of a project.  

This paper conceptualizes a model that will overcome some 

of the limitations cited in [12]. The new technique is to 

develop a model unique to a particular environment (or an 

organization), which should more accurately reflect that 

environment. A number of studies suggest that local models 

are more accurate than all-purpose models. Studies have 

shown that most organizations that have built up 

considerable databases over time, generally have a history of 

software management, and would have a custom model in 

place as opposed to deploying a generic one. 
The approach to the development of the new model involves 

a number of activities that need to be performed. Data 

gathering is an essential part to build the model. 

The model will improve the cost estimation process by 

gathering related data on previous projects. The simplest 

way to gather data is to have a stable workforce so the 

project and process data are maintained in the memory of 

individuals. However, relying on individual’s imperfect 

memory is completely inadequate for software project. To 

overcome such limitations, it is necessary to have more 

rigorous approach to data collection. The data collection 

approach should contain information of the product and 
software artifacts used in each phase of software process. 

Software Metrics is quantitative technique of recording the 

history of a product. The model will have useful technique 

for gathering and applying metrics information to cost 

estimation. (Software Engineering Institute, CMU, IEEE 

forms will be used). 

The data represent automated system projects that are 

completed and deployed. The data consists of function of 

time f(t),  (Pi), APSAi, and Cost. f(t) represents the time to 

traverse from state to state in the Markov Model. Pi 

represents likelihood to traverse from state to state in 
Markov Model. APSAi represents the Accomplishment 

Percentage of Software Artifacts for each artifact. Cost 

represents the effort t and/or the cost at each certain state. 

The effort of each state measured in work-hours represents  

Figure 1. Software Engineering Process Model 



 ISSN 1013-5316; CODEN; SINTE 8 Sci.Int.(Lahore),25(3),419-424,2013 

 

422 

work expended from the previous state. Software 

Measurements is widely recognized as an effective means to 

monitor, control, predict, and improve software development 

projects. However, effective software measurement requires 

a great deal of information, data recording be documented. 

This paper assumes the framework is based on the notion 
that software organization has a software measurement 

environment structured along the following points: 

1-Goals and objectives are set relative to the software 

product and processes. 

2- Data collection processes and recording mechanisms are 

defined and used. 

3- A data analysis and corrective action process is defined 

and used. 

4- Measurements and reports are part of closed-loop system 

that provides current (operational) and historical information 

to technical staff and management.  

These points are prerequisites for all measurement 

environments, and are stated here to emphasize that their 

implementation is essential for the successful use of the 

framework used. 

The framework used to satisfy these criteria consists of the 

following steps: 

1-Identify the principal attributes that characterize the object 

to be measured. 

2- Identify the principal classes of values within each 

attribute. 

3- Prepare a checklist of principal attributes and their values. 

4- Record the values on a suitable format. 
5- Make and record measurements according to the 

definition and data specifications 

One good feature of the model that its ability to use any 

lifecycle models like sequential model, or spiral model. In 

addition, any software artifacts can be used and applied in 

the model. More explanation will be provided later in this 

paper. 

5. SOFTWARE ENGINEERING PROCESS MODEL 

Process models vary significantly from organization to 

organization. The software engineering process model may 

have discovery, phase, design phase, development phase 

testing phase. A software engineering lifecycle is the process 

of applying each of these phases, sequentially or iteratively, 

until a product is no longer supported. [12]. In the sequential 

paradigm, each phase is performed in order until the product 

is complete. The process starts in the discovery phase and 

then moves to each subsequent phase when the prior phase 

determined to be complete. The iterative model allows the 

phases to be performed in sequence on a smaller slice of the 

system. This process is repeated on other parts of the system 

until the entire system is developed. Figure1 depicts the 

sequential model and two different versions of the iterative 

model. In general software process is composed of the 

following as Whittaker in [13] stated: 

1-Phases define the major focus of activity during a 

particular part of the process.  
2-Cycles are sub-phases in which related activity is 

performed iteratively toward common goal. Thus, several 

related activities are performed repeatedly until the cycle of 

work is complete. 

3-Tasks define action items and work during a particular 

phase.  

4- Artifacts are the documents and deliverables produced 

during process execution. Artifacts describe the result of the 
tasks [13] 

 
6. BUILDING THE PROPOSED MODEL 
After collecting data of historical projects, the second step is 

to transfer these data into Markov Chain model from the 

derived set (M1,M2,…,Mm) depending upon the size and 

complexity. Based on size and complexity, organization may 

have one or more models. 

The Markov chain is a couple (S, ) where S is the set of all 

state of the past software project metrics. These metrics 

include the APSA, the Accomplishment Percentage of 

Software Artifacts.  : S x I [0.1]  S is the non 

deterministic transition function, where I is the set of 

function of time f(t). The transition function  describes how 

f(t) cause state changes within the model. 
Each state represents APSA for each used artifacts. 

The probability distribution associated with each state can 

represent the Expert Judgment profile, i.e. the probability 

that the corresponding function of time will be applied. 
There exists sufficient literature on arriving at judgment 

parameters in the field of Decision Modeling [12]. The 

assessment of probabilities describes the likelihood of 

events. It is useful to quantify the likelihood using 

probability scale. The expression of probabilities is to 

quantify the likelihood using probability scale. That would 

be helpful in allowing project manager to identify decision 

strategy.  

Now, if organization has a new project (Pnew) to be built, a 

suitable Markov Chain model should be selected from the 

earlier set (M1,M2,…,Mm). The selection will be based on 
Analytical Hierarchy Process (AHP). 

AHP provides a proven, effective means to deal with 

complex decision making and can assist with identifying and 

weighting selection criteria, analyzing the data collected for 

the criteria and expediting the decision-making process.  

AHP helps capture both subjective and objective evaluation 

measures of the new project, providing a useful mechanism 

for checking the consistency of the evaluation measures and 

alternatives suggested by the team. 

The first step is for the team to decompose the goal into its 

constituent parts, progressing from the general to the 

specific. In its simplest form, this structure comprises a goal, 

criteria and alternative levels. Each set of alternatives would 

then be further divided into an appropriate level of detail, 

recognizing that the more criteria included, the less 

important each individual criterion may become. In the 

model, the alternatives will be the models that defined by 

Boehm [14]:  



Sci.Int.(Lahore),25(3),419-424,2013 ISSN 1013-5316; CODEN; SINTE 8 

 

423 

 

Table 1. COCOMO standard size 

Model Small Interme
diate 

Medium Large V Large 

Size  2 

KDSI 

8 KDSI 32 KDSI 128 

KDSI 

512 KDSI 

Next, assign a relative weight to each Model. Each criterion 

has a local (immediate) and global priority. The sum of all 

the criteria beneath a given parent criterion in each tier of the 

model must equal one. Its global priority shows its relative 

importance within the overall model. The criteria are 

different from organization to another. An example of 

criteria will be: 

 Size of project 
 Business Criticality 

 Stability of requirements  

 Ease of Communication 
 Maturity of Technology 

 Performance Constraints 

 Reengineering Factors 

Next, after the criteria are weighted and the information is 

collected, put the information into the model. Scoring is on a 

relative basis, not an absolute basis, comparing one choice to 

another. Relative scores for each choice are computed within 

each leaf of the hierarchy. Scores are then synthesized 

through the model, yielding a composite score for each 

choice at every tier, as well as an overall score. 

The project schedule provides a road map for a software 

project manager. If it has been properly developed, the 

project schedule defines the tasks and milestones that must 

be tracked and controlled as the project proceeds. Tracking 

can be accomplished in a number of different ways: 

 Conducting periodic project status meetings in which 

each team member reports progress and problems. 
 Evaluating the results of all reviews conducted 

throughout the software engineering process. 

 Determining whether formal project milestone have 

been accomplished by the schedule date. 

 Comparing the actual effort and time to planned time 

and effort for each project. 

 Obtain assessment of progress to date. 

Cost variance and schedule variance techniques will be used 

for controlling a project. Both are defined in such a way that 

they will be negative when the project is behind schedule or 

over cost. So the effort variances are calculated as he actual 

effort minus the planned one. The schedule variance is the 

difference between the planned time and the actual time.  

The variances are formulated as ratios rather than 

differences so that the effort variance become Effort 

Performance Index (EPI) = Ei / AEi , the Schedule 

Performance Index  (SPI) = Ti/ATi. Use of ratios is 

particularly helpful when an organization wishes to compare 

the performance of several projects. However, the accuracy 

and usefulness of all these measures depend on the degree in 

which estimates of percent completion reflect reality 

7. ILLUSTRATIVE EXAMPLE 

In this example, all data are mainly collected from 

organization X that uses formal data collection approach.  

This organization has maintained and collected a database of 

all past projects (P1,P2,…,Pn).  It uses the iterative model 

shown in Figure1.  The data collection approach should 

contain information of the product and software artifacts 

used in each phase of software process. This approach 

assumes that there is a quantitative technique of recording 

the history of a product. Therefore, the provided example 

should have useful techniques for gathering and applying 

metrics information to cost estimation. 

For each project (Pi), the following metrics should be 

collected: 

The data consists of: 

1-Function of time f(t) which is the duration (days) to  

transfer from state to state. It is fixed for all arcs in each 

model. However, f(t) varies from model to model. 

2- Pi represents the probability to traverse from state to state 

in Markov Model 

3-APSAi represents the accomplishment Percentage of 

Software Artifacts for each artifact. In this example, RA is 

the requirement analysis which is an artifact used in 

discovery phase. FS, functional specification, is design 

phase artifact. COD, coding, is development phase artifact. 

TC. Test cases, is testing phase artifacts. 

4- Ei represents the effort of each state measured in work-

hours represents work expended from the previous state.  
 

Figure 2. Model 1 (Small Model) 

All 0%
P=0.3

RA 60%

FS 0%

COD 0%

TC 0%

P=1

P=0.5

P=0.7

RA 100%

FS40%

COD30%

TC 10%

RA 100%

FS 70%

COD60%

TC 30 %

P=0.
5

P=1

P=1

All 100%

RA 30%

FS10%

COD 05%

TC 0%

E=3MM

E=2MM

E=4MM

E=4MM

E=5MM

 

f(t)= 10 days. 

Figure 3. Model 2 (Medium Model) 

All 0%
P=0.6

RA 40%

FS 20%

COD 0%

TC 0%

P=1

P=0.2

P=0.2

RA 100%

FS100%

COD 40%

TC 30%

RA 100%

FS 80%

COD 50%

TC 20%

P=1

P=1

All 100%

RA 10 0%

FS 0%

COD 0%

TC 0%

RA 50%

FS 10%

COD 5%

TC 0%

RA 100%

FS 40%

COD15%

TC 5%

P=0.2

P=1

P=1

P=0.8

E=9MM

E=7MM

E=8MM

E=6MM

E=8MM

E=4MM

 
f(t)= 25 days 



 ISSN 1013-5316; CODEN; SINTE 8 Sci.Int.(Lahore),25(3),419-424,2013 

 

424 

Figure 4- Model 3 (Large Model) 

All 0%

P=0.4

RA 40 %

FS 15%

COD 0%

TC  0%

P=1

P=1

P=0.6

RA 100%

FS 40 %

COD 15%

TC 5%

RA100 %

FS 60%

COD20%

TC 0%

P=1

P=0.7

RA 80 %

FS 30%

COD 0%

TC 0%

All

100%

RA 100%

FS 100%

COD70%

TC 30%

RA 100%

FS 100%

COD 80%

TC 10%

P
=1

P=1

P=0.3

E=15MM

E=17MM

E=12MM

E=10MM

E=19MM

E=22MM

E=15MM

 

f(t)= 60 days 

Now, if organization X has a new project (Pnew) to be built, 

a suitable Markov Chain model should be selected from the  

set (M1,M2,M2) shown in Figure 2,3, and 4. The selection 

will be based on Analytical Hierarchy Process (AHP). After 

applying the AHP, (Pnew will be compared to one of the 

models. Organization X can compute the following for the 

new project (Pnew): 

 The ability to compute the Effort (Ei) at any certain 

stage. 

 Determine all possible paths Pnew can take. 

 Calculate the shortest path with its associated 
probability. 

 Calculate the cost variance and the schedule 

variance 

 Determine whether formal project milestone has 

been accomplished by the schedule date. 

 
ACKNOWLEDGMENT 
The author extendhis appreciation to the Deanship of 

Scientific Research at King Saud University for funding this 

work through the Research Project noNFG2-14-33. 

 
REFERENCES: 

1. Kemerer, C.F., An empirical validation of 

software cost estimation models, CACM,36(2), 

(1993) 

2. Ricardo de A. Araújo, Adriano L.I. Oliveira, 
Sergio Soares, A shift-invariant morphological 

system for software development cost estimation, 

Expert Systems with Applications, 38 (4), 4162-
4168, (2011). 

3. NikolaosMittas, Lefteris Angelis, Visual 

comparison of software cost estimation models 
by regression error characteristic analysis, 

Journal of Systems and Software, 83 (4), 621-

637, (2010).  

4. Javier Aroba, Juan J. Cuadrado-Gallego, 
Miguel-Ángel Sicilia, Isabel Ramos, Elena 

García-Barriocanal, Segmented software cost 

estimation models based on fuzzy clustering, 
Journal of Systems and Software, 81 (11), 1944-

1950, (2008). 

5. NikolaosMittas, MarinosAthanasiades, Lefteris 

Angelis, Improving analogy-based software cost 
estimation by a resampling method, Information 

and Software Technology, 50 (3), 221-230, 

(2008). 

6. Ricardo de A. Araújo, Sergio Soares, Adriano 
L.I. Oliveira, Hybrid morphological 

methodology for software development cost 

estimation, Expert Systems with Applications, 39 

(6), 6129-6139, (2012).  

7. K. Vinay Kumar, V. Ravi, Mahil Carr, N. Raj 

Kiran, Software development cost estimation 
using wavelet neural networks, Journal of 

Systems and Software, 81 (11), 1853-1867, 

(2008). 

8. Zhihao Chen, Tim Menzies, Dan Port, and Barry 
Boehm, Feature subset selection can improve 

software cost estimation accuracy, SIGSOFT 

Softw. Eng. Notes, 30 (4), 1-6, (2005). 
9. Qin, X. and M. Fang Summarization of Software 

Cost Estimation,Procedia Engineering 15(0), 

3027-3031, (2011) 
10. ZeynabAbbasiKhalifelu, 

FarhadSoleimanianGharehchopogh, Comparison 

and evaluation of data mining techniques with 

algorithmic models in software cost estimation, 
Procedia Technology, 1, 65-71, (2012). 

11. Ricardo de A. Araújo, Adriano L.I. Oliveira, 

Sergio Soares, Silvio Meira, An evolutionary 
morphological approach for software 

development cost estimation, Neural Networks, 

32, 285-291, (2012). 

12. Nemecek, S. ,Systematic defects in software cost-
estimation models harm, Management of 
Engineering and Technology, 1, 414-415, (2001). 

13. Whittaker, James A. Introduction to Software 

Engineering. Melbourne, Florida: SES Press, 
1998. 

14. Boehm, B.W., Software Engineering Economics. 

Prentice-Hall: Englewood Cliffs, NJ, 1981. 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=952325
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=952325

